Journal of Organometallic Chemistry, 307 (1986) 255-261 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESIS OF CATIONIC INDENYLIRON COMPLEXES: $[\eta^5-C_9H_7Fe(CO)_2L]^+$ (L = phosphine, phosphite, CO)

HASSAN H. HAMMUD and GRAINNE M. MORAN*

Department of Chemistry, American University of Beirut, Beirut (Lebanon) (Received August 20th, 1985; in revised form December 30th, 1985)

Summary

Synthetic routes to the cationic complexes $[\eta^5-C_9H_7Fe(CO)_2L]^+$, (L = CO, phosphine, phosphite, nitrile, pyridine) have been investigated. The most versatile method is oxidation of the dimer $[\eta^5-C_9H_7Fe(CO)_2]_2$ with ferricinium ion, in the presence of the appropriate ligand. $[\eta^5-C_9H_7Fe(CO)_3]^+$ is best prepared by oxidation of the dimer with Ph₃CBF₄. This tricarbonyl cation readily loses one CO group on reaction with phosphines and P(OCH₃)₃. The acetonitrile ligand in $[\eta^5-C_9H_7Fe(CO)_2CH_3CN]^+$ can also be replaced by phosphines. Finally, reactions of $\eta^5-C_9H_7Fe(CO)_2X$, (X = Br, I) with phosphines also yield cationic products, isolated as PF₆⁻ salts.

The cyclopentadienyl complexes $[(\eta^5-C_5H_5)Fe(CO)_nL_{3-n}]^+$ (where L is a 2-electron donor) have been widely investigated [1]. Recently, a range of pentamethyl-cyclopentadienyl complexes $[(\eta^5-C_5Me_5)Fe(CO)_nL_{3-n}]^+$ have also been reported [2]. Comparatively little is known about the related indenyl $(\eta^5-C_9H_7)$ system, though some olefin complexes $[(\eta^5-C_9H_7)Fe(CO)_2(\eta^2-\text{olefin})]^+$ have been synthesised [3]. The indenyl cations might be expected to be more reactive towards substitution, owing the ability of the indenyl ring to slip to η^3 -coordination [4], allowing associative attack by an incoming ligand. One study of the rate of CO replacement by $P(OC_2H_5)_3$ and $P(OC_6H_5)_3$ in $\eta^5-C_9H_7Fe(CO)_2I$ showed however that a dissociative mechanism operated [5].

We describe here synthetic routes to monosubstituted cations $[\eta^5-C_9H_7Fe-(CO)_2L]BF_4$ (or PF₆) for a range of ligands L (Scheme 1). The starting material in all cases is the dimer $[\eta^5-C_9H_7Fe(CO)_2]_2$ (1) [6].

The acetonitrile complex $[\eta^5-C_9H_7Fe(CO)_2NCCH_3]BF_4$ (2a), was obtained by protonation of 1 in acetonitrile with HBF₄/acetic anhydride, a modification of the method reported for the $\eta^5-C_5H_5$ analogue [7]. The CH₃CN ligand cannot be displaced by phosphites.

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

SCHEME 1

In contrast, the more basic alkyl phosphines $P(n-C_4H_9)_3$ and $P[CH(CH_3)_2]_3$ react rapidly with 2a at room temperature giving the monosubstituted cations 3a and 3b (Table 1). Refluxing conditions are required for substitution of CH₃CN by $P(2-OCH_3C_6H_4)_3$. Similar reactivity is found for $[\eta^5-C_5H_5Fe(CO)_2NCCH_3]^+$ [8].

A more general route to these cations is oxidation of 1 in the presence of the appropriate ligand. Of the oxidation methods available [2,9,10], the ferricinium ion $[(\eta^5-C_5H_5)_2Fe][BF_4]$ [2] was found to be the most efficient, allowing easy purification of the products. The reaction between 1 and $(\eta^5-C_5H_5)_2Fe^+$ in CH₂Cl₂/acetone at 0°C was successful for a wide range of ligands (L = phosphine, phosphite, nitrile, pyridine), Table 1. It is noteworthy that the oxidation of 1 is very rapid with both $(\eta^5-C_5H_5)_2Fe^+$ and Ph₃C⁺, in contrast to the long reaction times required for the $\eta^5-C_5H_5$ [10] and $\eta^5-C_5M_6$ [2] dimers.

Attempts to prepare a solvent coordinated intermediate $[\eta^5-C_9H_7Fe(CO)_2S]^+$ (S = THF or acetone) by this method, were unsuccessful. Instead, the tricarbonyl cation $[\eta^5-C_9H_7Fe(CO)_3]^+$ (4) was isolated from the reaction mixtures in low yields. The optimum synthesis of 4 is reaction of 1 with $[Ph_3C][BF_4]$ in CH_2Cl_2 , giving yields of 55–60% even in the absence of added CO. 4 readily loses one CO ligand on treatment with phosphines and P(OCH_3)_3, again giving cations 3. However 4 does not react with P(OPh)_3 even after prolonged reaction times.

The reactions of $\eta^5 - C_9 H_7 Fe(CO)_2 X$ (X = Br, I) with phosphorus ligands are of interest, in view of the complex reactivity displayed by their $\eta^5 - C_5 H_5$ counterparts [11-15]. $\eta^5 - C_9 H_7 Fe(CO)_2 Br$ (5) prepared from 1 and Br_2 , is noticeably less stable than $\eta^5 - C_5 H_5 Fe(CO)_2 Br$. Solutions of 5 decompose slowly giving variable amounts of 4. Reactions of 5 with the arylphosphines P(4-CH₃C₆H₄)₃ and P(2-OCH₃C₆H₄)₃ in THF at room temperature give the monosubstituted cations 3c and 3d, isolated as PF_6^- salts. P(n-C₄H₉)₃ also reacts with 5 in THF but only gives 3a in ~ 15% yield. However, when the solvent was changed to methanol, with NH₄PF₆ added. 3a was

Compound		Method ^a	Yield ^b	Analysis (found (calcd.) (%))		
No.	L		(%)	C	Н	N
2 a	CH ₃ CN ^c		68	43.46	2.93	3.84
				(44.00)	(2.84)	(3.95)
2b	C ₆ H ₅ CN	III	67	51.02	2.91	3.29
				(51.84)	(2.90)	(3.36)
2c	C5H5N	III	63	48.28	3.27	4.10
				(48.88)	(3.08)	(3.56)
3a	$P(n-C_4H_9)_3$	ІЬ	68 (44)	53.52	6.69	-
				(53.52)	(6.64)	
		II	84 (57)			
		III	52			
3b	$P(i-C_3H_7)_3$	II	70 (45)	49.15	6.45	-
				(50.67)	(5.96)	
3c	$P(4-CH_{3}C_{6}H_{4})_{3}$	la	50 (33)	55.92	4.26	-
				(56.64) ^d	(4.16)	
3d	$P(2-CH_3OC_6H_4)_3$	Ia	48 (31)	57.73	4.34	-
				(57.67)	(4.24)	
		111	65			
		IV	65 (48)			
3e	$P(3-ClC_6H_4)_3$	III	54	50.96	2.93	-
				(51.26)	(2.82)	
3f	$P(OC_6H_5)_3$	III	61	55.84	3.56	-
				(55.81)	(3.55)	
3g	$P(OC_2H_5)_3$	111	71	42.60	5.54	-
				(42.54)	(4.62)	
3h	$P(OCH_3)_3^c$		78 (44)	39.29	3.70	-
				(38.38)	(3.65)	
4	CO °		57	41.97	2.10	-

TABLE 1 PREPARATIVE DETAILS AND ANALYTICAL DATA FOR $[\pi^{5}-C_{0}H_{7}Fe(CO)_{2}L]^{+}$

^{*a*} Methods: Ia: L+5 in THF, NH₄PF₆/methanol; Ib: L+5+NH₄PF₆ in methanol; II: L+2 in CH₂Cl₂; III: L+1+Cp₂FeBF₄; IV: L+6, reflux in petroleum ether. ^{*b*} Overall yield from 1 in parentheses for methods I, II and IV. ^{*c*} See text for preparation. ^{*d*} PF₆ salt.

(2.06)

(41.16)

obtained in 68% yield. $P(OPh)_3$ and $P(OCH_3)_3$ do not react with 5 at room temperature, while refluxing conditions lead only to decomposition.

Reactions of η^5 -C₅H₅Fe(CO)₂X with phosphines and phosphites lead to displacement of X ([η^5 -C₅H₅Fe(CO)₂L][X]) or CO substitution (η^5 -C₅H₅Fe(CO)LX), depending on the nature of X and the basicity of the incoming ligand. Changing the solvent or reaction temperature may also affect the product distribution [11]. In the indenyl system, however, η^5 -C₉H₇Fe(CO)₂Br gives exclusively cationic products under a variety of experimental conditions. No evidence for the CO-substituted product η -C₉H₇Fe(CO)LBr was found. A possible mechanism involving an η^3 -intermediate (A) is shown in Scheme 1.

In view of the contrasting behaviour found for η^5 -C₉H₇Fe(CO)₂I (6), which gives η^5 -C₉H₇Fe(CO)LI on reaction with phosphites [5], the reactions of 6 with P(n-C₄H₉)₃ and P(2-OCH₃C₆H₄)₃ were investigated. The cations **3a** and **3d** were obtained in 65-70% yields on heating 6 with the phosphines in petroleum ether for 1 h. It may be that the less basic phosphites will not add easily to 5 or 6 and under the strong reaction conditions used for **6** [5], the alternative dissociative mechanism (Scheme 1, B) predominates. The involvement of free radical intermediates has been implicated in substitution reactions of η^5 -C₅H₅Mo(CO)₃Br [16] and in [η^5 -C₅H₅Fe(CO)₂]₂ catalysed reactions of η^5 -C₅H₅Fe(CO)₂I [15] and cannot be ruled out in the present study.

Conclusions

Synthetic routes to a range of cationic indenyliron complexes $[\eta^5-C_9H_7Fe(CO)_2L]$ have been assessed. As expected the indenyl complexes are generally more reactive than their $\eta^5-C_5H_5$ analogues, particularly in the case of the oxidation of the dimer 1. The reactions of $\eta^5-C_9H_7Fe(CO)_2X(X = Br, I)$ with phosphines are fast and give exclusively cationic products.

The oxidation of 1 and the reactions of the cations 3 with nucleophiles are under investigation.

Experimental

All reactions were carried out under a nitrogen atmosphere. Solvents were dried by standard procedures. Petrol refers to petroleum ether, boiling fraction 40-60°C. Ligands were obtained commercially and used as received. η^5 -C₉H₇Fe(CO)₂I (6) was prepared by a literature method [5].

Infrared spectra were run on a Perkin-Elmer 257 or a Perkin-Elmer 398 spectrometer in 0.50 mm cells. Proton NMR spectra were recorded on a Varian EM 360L spectrometer (Table 2). Elemental analyses were performed by the E. Pascher Microanalytical Laboratory, Bonn, W. Germany (Table 1).

Compound		Infrared " and ¹ H NMR resonances ^b (δ (ppm))							
No.	L	$\frac{\nu(CO)}{(cm^{-1})}$		Indenyl ^c					
				$H_A, H_B(m)$	H _C (d)	H _D (m)	L		
2 a	CH ₃ CN	2067	2023	7.97	6.05	5.95	2.10 (s, CH ₃)		
2b	C ₆ H ₅ CN	2071	2025	7.80	5.97	5.60	7.80 (m, Ph)		
2c	C ₅ H ₅ N	2056	2009	7.67-7.50	6.13	5.70	7.67, 8.06, 8.35 (C ₅ H ₅ N)		
3a	$P(n-C_4H_9)_3$	2040	1993	8.04, 7.77	6.30	5.98	$1.0(m), 1.56(m) (C_4 H_9)$		
3b	$P(CH(CH_3)_2)_3$	2041	1995	7.97	6.48	6.17	1.35 (dd, CH ₃), 2.75 (m, CH)		
3c	$P(4-CH_3C_6H_4)_3$	2046	2005	7.86-7.45	6.26	5.45	2.48 (s, CH_3), 7.45–7.86 (m, C_2H_3)		
3d	$P(2-CH_3OC_6H_4)_3$	2047	2007	7.77-7.00	5.83	5.18	$3.85 (s, CH_3),$ 7.00-7.77 (m, C ₄ H ₄)		
3e	$P(3-C C_{A}H_{A})_{3}$	2051	2009	7.88-7.37	6.40	5.83	7.37 - 7.88 (m, C ₆ H ₄)		
3f	$P(OC_6H_5)_3$	2065	2025	7.87-7.60	5.87	6.00	$7.60 (m, C_6 H_5)$		
3g	$P(OC_2H_5)_3$	2061	2017	7.94	6.40	5.90	1.44 (t, CH_3), 4.32 (a, CH_2)		
3h	$P(OCH_3)_3$	2060	2015	7.91	6.42	5.91	4.02 (d, CH ₃ , J(HP) 12 Hz)		
4	со	2115	2063	8.04	6.76	6.39			

TABLE 2 INFRARED AND ¹H NMR DATA

^a In CH₂Cl₂. ^b In (CD₃)₂CO, TMS internal reference. ^c See Scheme 1 for labelling of indenyl protons.

Preparation of $[\eta^5 - C_9 H_7 Fe(CO)_2]_2$ (1)

The method of Hallam and Pauson was used [6]. Indene (12 g, 0.1 mol) and $Fe(CO)_5$ (17.6 g, 0.09 mol) were heated to $124 \pm 2^{\circ}C$ for 18 h. After cooling to $0^{\circ}C$, the supernatant red oil was removed. The residue was washed with petrol, extracted with CH_2Cl_2 and filtered through celite. The product was precipitated with petrol and recrystallised (CH_2Cl_2 /petrol) giving $[C_9H_7Fe(CO)_2]_2$ (1) (2.5 g, 12.2%).

Preparation of $\eta^5 - C_9 H_7 Fe(CO)_2 Br$ (5)

A solution of Br₂ (0.35 g, 2.2 mmol) in CH₂Cl₂ was added dropwise to a solution of the dimer 1 (1.0 g, 2.2 mmol) in CH₂Cl₂. After removal of the solvent in vacuo the crude product was washed with petrol and recrystallised (CH₂Cl₂/petrol) giving a red-brown powder (0.88 g, 65%). Infrared (CH₂Cl₂): ν (CO): 2039, 1993 cm⁻¹. ¹H NMR (CDCl₃) δ (ppm): 7.60 (m, 4H, H_A, H_B); 5.36 (d, 2H, H_C); 5.21 (q, 1H, H_D).

Preparation of $[\eta^5 - C_9 H_7 Fe(CO)_2(CH_3 CN)][BF_4]$ (2a)

A solution of HBF₄aq. (~8 mmol) in 2 cm³ acetic anhydride was added dropwise to 1 (1.5 g, 3.3 mmol) in 15 cm³ acetonitrile. After 15 min the solvent was evaporated, the residue was washed with diethyl ether and recrystallised (CH₂Cl₂/diethyl ether) giving a red powder (1.585 g, 68%).

Reaction of 2a with alkyl phosphines

2a (0.25 g, 0.7 mmol) was stirred with 2 equivalents of phosphine L, in CH₂Cl₂ at room temperature. The solution rapidly changed from orange to yellow. After 5 min, the solvent and excess phosphine were evaporated in vacuo and the product recrystallised (CH₂Cl₂/diethyl ether) to give $[\eta^5-C_9H_7Fe(CO)_2L][BF_4]$ as a yellow solid. $L = P(n-C_4H_9)_3$ (**3a**), yield 84%; $L = P(i-C_3H_7)_3$ (**3b**), yield 70%.

Reaction of 2a with $P(2-OCH_3C_6H_4)_3$

2a (0.15 g, 0.42 mmol) and P(2-OCH₃C₆H₄)₃ (0.50 g, 1.43 mmol) in 20 cm³ acetone/5 cm³ THF, were heated to 80°C for 16 h. The solvents were evaporated in vacuo. The residue was washed well with toluene and recrystallised twice from CH₂Cl₂/diethyl ether, giving $[\eta^5-C_9H_7Fe(CO)_2P(2-OCH_3C_6H_4)_3][BF_4]$ (3d) (0.18 g, 64%).

Preparation of $[\eta^5 - C_9 H_7 Fe(CO)_2 L] [BF_4]$ by oxidation of 1

 $[Cp_2Fe][BF_4]$ (0.3 g, 1.1 mmol) in 5 cm³ acetone was added to 1 (0.2 g 0.44 mmol) and 2 equivalents of ligand L in 30 cm³ CH₂Cl₂. After 15 min at room temperature the solution was filtered. The filtrate was reduced in volume and petroleum ether was added to precipitate the crude product. Recrystallisation (CH₂Cl₂/diethyl ether) gave the pure product. Ligands used were C₆H₅CN, C₅H₅N, P(n-C₄H₉)₃, P(2-OCH₃C₆H₄)₃, P(3-ClC₆H₄)₃, P(OC₆H₅)₃, P(OC₂H₅)₃. Yields are given in Table 1.

Oxidation of 1 in THF or acetone

Reaction of 1 (0.2 g, 0.44 mmol) with $[Cp_2Fe][BF_4]$ (0.3 g, 1.1 mmol) in CH_2Cl_2/THF or $CH_2Cl_2/acetone 2/1$ and work-up as described above, gave $[\eta^5-C_9H_7Fe(CO)_3][BF_4]$ (4) in 22% yield.

Preparation of $[\eta^5 - C_9 H_7 Fe(CO)_3]^+$ (4) in CH_2Cl_2

1 (0.30 g 0.66 mmol in 20 cm³ CH₂Cl₂ was stirred with Ph₃CBF₄ (0.64 g, 2.0 mmol) for 2 h at room temperature. Filtration through celite, concentration of the solution and addition of diethyl ether gave crude 4. Recrystallisation (CH₂Cl₂/diethyl ether) gave 4 (0.257 g, 57%).

Reaction of 4 with phosphines, phosphites

4 (0.045 g, 0.13 mmol) was stirred with three equivalents of ligand L at room temperature. Concentration of the solution and addition of diethyl ether gave the crude product. Recrystallisation $(CH_2Cl_2, \text{ diethyl ether})$ gave pure product, $[\eta^5-C_9H_7Fe(CO)_2L][BF_4]$. 3a: $L = P(n-C_4H_9)_3$, reaction time 10 min, yield 73%; 3d: $L = P(2-OCH_3C_6H_4)_3$, reaction time 50 min, yield 70%; 3h: $L = P(OCH_3)_3$, reaction time 30 min, yield 78%.

Reaction of $\eta^5 - C_0 H_7 Fe(CO)_2 Br$ (5) with phosphines

(i) in THF: 5 (0.221 g, 0.72 mmol) and two equivalents of phosphine were stirred in THF, for 30 min at room temperature. The solvent was evaporated and the residue washed with petroleum ether. A solution of NH_4PF_6 (0.24 g, 1.5 mmol) in methanol was added. A yellow precipitate formed on stirring, was collected, washed with methanol and recrystallised ($CH_2Cl_2/diethyl$ ether). Yields: For aryl phosphines ~ 50% (Table 1) for alkyl phosphine $P(n-C_4H_9)_3 \sim 15\%$.

(ii) In methanol: 5 (0.1 g, 0.33 mmol), $P(n-C_4H_9)_3$ (0.13 g, 0.64 mmol) and NH_4PF_6 (0.11 g, 0.68 mmol) were dissolved in 15 cm methanol. After 1 h at room temperature a yellow solution containing some precipitate was obtained. Evaporation of the solvent, extraction of the residue with CH_2Cl_2 and recrystallisation $(CH_2Cl_2/diethyl ether)$ gave $[\eta^5-C_9H_7Fe(CO)_2P(n-C_4H_9)_3][PF_6]$ (3a) (0.116 g, 68%).

Reaction of η^5 -C₉H₇Fe(CO)₂ I (6) with phosphines

6 (0.10 g, 0.28 mmol) and 0.60 mmol phosphine in 20 cm³ petroleum ether were refluxed for 1 h. The brown precipitate which formed was washed with petroleum ether and treated with NH_4PF_6 (0.07 g, 0.43 mmol) in methanol. Evaporation of the solvent, extraction with CH_2Cl_2 and recrystallization $(CH_2Cl_2/diethyl ether)$ gave the cationic products in yields of 60% $(L = P(n-C_4H_9)_3)$ and 65% $(L = P(2-OCH_3C_6H_4)_3)$.

Acknowledgements

This work is supported by the University Reasearch Board, A.U.B. Mr. Ali A.K.M. Al-Attar is thanked for two experiments. We acknowledge the helpful comments of a referee.

References

- (a) G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Vols. IV, VIII; (b) R.B. King in E.A. Koerner von Gustorf, F.-W. Grevels, I. Fischler, (Eds.), The Organometallic Chemistry of Iron, Academic Press, New York, 1981.
- 2 D. Catheline and D. Astruc, Organometallics, 3 (1984) 1094 and ref. therein.
- 3 J.W. Faller and B.V. Johnson, J. Organomet. Chem., 88 (1975) 101.

- 4 (a) L.-N. Ji, M.E. Rerek and F. Basolo, Organometallics, 3 (1984) 740; (b) P. Caddy, M. Green, E. O'Brien, L.E. Smart and P. Woodward, Angew. Chem. Int. Ed. Engl. 16 (1977) 648; (c) A.J. Hart-Davis and R.J. Mawby, J. Chem. Soc. A, (1969) 2403; (d) C. White, R.J. Mawby and A. Hart-Davis, Inorg. Chim. Acta, 4 (1970) 441.
- 5 D.J. Jones and R.J. Mawby, Inorg. Chim. Acta, 6 (1972) 157.
- 6 B.F. Hallam and P.L. Pauson, J. Chem. Soc., (1958) 646.
- 7 B. Callan and A.R. Manning, J. Organomet. Chem., 252 (1983) C81.
- 8 G. Moran, unpublished results.
- 9 (a) W.P. Giering and M. Rosenblum, J. Chem. Soc., Chem. Commun., (1971) 441; (b) B.D. Dombek and R.J. Angelici, Inorg. Chim. Acta, 7 (1973) 345; (c) E.C. Johnson, T.J. Meyer and N. Winkerton, Inorg. Chem., 10 (1971) 1673.
- 10 P.F. Boyle and K.M. Nicholas, J. Organomet. Chem., 114 (1976) 307.
- 11 R.J. Haines, A.L. Du Preez and I.L. Marais, J. Organomet. Chem., 28 (1971) 405.
- 12 P.M. Treichel, R.L. Shubkin, K.W. Barnett and D. Reichard, Inorg. Chem., 5 (1966) 1177.
- 13 A. Davison, M.L.H. Green and G. Wilkinson, J. Chem. Soc., (1961) 3172.
- 14 E.W. Abel and S.P. Tyfield, Adv. Organomet. Chem., 8 (1971) 150.
- 15 N.J. Coville, M.O. Albers and E. Singleton, J. Chem. Soc., Dalton Trans., (1983) 947.
- 16 C. White and R.J. Mawby, Inorg. Chim. Acta, 4 (1970) 261.